化工车间丙烯醇报警器
为了有效的解决这样一个问题,我们选择对输送控制系统进行相应的改造和创新。我们在确保输送设备正常运行的状态下,在输送设备上面安装一个高度感应系统,这个高度感应系统可以自动感觉到有无煤炭运输,通过煤炭重量的传输判断进行工作,有的话就正常工作,零负重的时候就停止作业。这样以来就很好的解决了掘进机无休止工作的不良情况,减少了工作过程中的电能浪费。能电动机的选取电动机在掘进机设备中的使用非常广泛,传统电动机的运行效率并不是非常的,而且在一定程度上还造成极度的浪费,所以在电动机的选择方面使用节能性更好的电动机设备成为必然。
产品概述:
现场显示型气体探测器是按照GB15322.1-2003、GB12358-2006设计的工业用可燃气体、有有害气体安全检测仪器。
该探测器为双腔体结构设计,具有LCD现场显示,红外遥控器校零、标定等功能。两线制无极性供电和信号传输,安装简单方便,布线经济。
产品主要特点:
◆LCD浓度显示,LED状态指示
LCD现场浓度显示,LED现场状态指示,可实时显示测器的运行状态。
◆数字信号
与模拟信号4-20mA标准电流信号相比,调换前无需行调试,可随时随意调换气体探测器的位置,维护更方便。优点准确率高,传输距离较远,抗干扰好。
化工车间丙烯醇报警器
VOCs是挥发性有机化合物(VolatileOrganicCompounds)的英文缩写。随着人们环保意识的日益增强,零VOCs、低气味特点成为目前水性涂料的重要发展方向。本文着重对水性零VOCs、低气味丙烯酸酯涂料技术手段进行评述。零VOCs涂料乳液合成工艺1.1提高单体转化率乳液聚合体系中的残留单体是涂料VOCs和气味的主要来源之一。为了得到零VOCs涂料,需要提高单体转化率,以使残单含量降低。
◆测量准确
传感器采用进口气体敏感元件,精度高,零点漂移小,抗中毒性能好。
◆防爆型设计
可用于工厂条件的1、2区危险场合。
◆维修方便
传感器采用数字化模组设计,现场更换时无需校零、标定。
◆声光报警(选配)
可选配的防爆声光报警器,实现现场声光报警。
人们从这一研究成果开始了对:GS颗粒化的研究历程。而国内学者对:GS的研究始于1995年,相对滞后于国外的研究。好氧颗粒污泥是由相互聚集的、多物种的微生物构成的团体,被认为是一种特殊的自固定化生物。在过去的2年中,废水生物处理领域理论研究和工程应用证明,固定化的活性污泥在水质净化方面比悬浮活性污泥更具有效率。迄今为止,好氧颗粒污泥被认为是有前途的废水生物处理技术之一。由于好氧颗粒污泥具有很多优点,近年来对其进行的研究也逐渐增多.但是对于其形成机理却是众说纷纭。
技术参数:
电气
◆供电电源:DC36V±15%
◆功率:<1W
◆通讯方式:M-BUS总线
◆信号输出:一组无源常开信号
◆连接线缆:RVS 2×2.5mm2
◆准确度:±5%FS
◆检测原理:催化燃烧式、电化学式、红外式、半导体式
◆响应时间:催化燃烧式T90<30s
运行成本低电渗透脱水在脱水过程中,虽然使用电力,但由于脱水效率好,污泥处置综合经济效益高。每吨污泥脱水(8%含水率降低至55%)仅消耗7至8千瓦时,电解热产生的无用电耗低于1%,冲洗水量小于1t/h,压缩空气气量.2m3/h,大大节约了能源。独立性已经设置了其它脱水设备时,只要使电渗透脱水部独立,就可以进一步降低脱水泥饼的含水率。不受热源及其他辅料的限制。可与现有污水厂污泥脱水装置直接对接。
环境
◆IP等级:IP65
◆工作温度:-40℃~70℃
◆湿度范围:10%RH~95%RH
◆压力范围:86Kpa~106Kpa
◆存储温度:-25℃~55℃
现场显示型型气体探测器产品安装
LED节能路灯碳减排量计算方法LED节能灯性能*,是低碳和负碳经济社会发展的一个突破口。推广使用LED节能灯可以大大减少电力消耗,从而减少能耗和碳排放量,虽然对于节能灯一类的低碳产品的推广使用而言,每一个低碳产品所产生的减排量是很微小的,但当推广使用数量累计到一定量的后,其整体减排收益则非常巨大。据有关方面统计,现有路灯总数大约在一亿盏以上,并以每年2%的速度增长。如果将这一亿盏路灯折合成6万盏25瓦的路灯进行对比,假定每盏路灯每天工作1小时,现在普遍的使用的高压钠灯每年将会产生将近11千克的二氧化碳,若全部改造成LED路灯,那么总共可以节约13万千瓦的功率,在1年内将节约597亿度电,从而也大大减少了二氧化碳的排放量。
◆材料:铸铝
◆防爆连接螺纹:G3/4"内螺纹
◆外形尺寸:190mm×130mm×75mm
◆重量:1.5kg
◆安装方式:贴壁式、抱管式、穿管式
◆配套使用的控制器:与本公司系列气体报警控制器配套使用
◆安装固定孔直径为:Φ8mm
◆探测器安装时应使传感器朝下固定
◆正确连线后,应固定好探测器外盖,以达到防爆要求
为了解决循环冷却水系统的腐蚀结垢问题,国内的火力发电厂常规的处理方法有以下几种。利用软化水降低补水的硬度该方法通过离子交换去除补水中的Ca2+和Mg2+等硬度离子而达到预防无机垢沉积的目的。其初期投资成本高,且需要严格控制软化器的失效终点,及时对交换树脂进行再生,因此日常运行费用较高。对于补水量较大的系统,由于需要处理的水量大,交换树脂的再生必须跟得上制水的要求,这可能难以保证弱酸处理后的水质的硬度要求,整个制水成本也较高,因此目前这种方法较少采用。